9 research outputs found

    Exploiting Properties of CMP Cache Traffic in Designing Hybrid Packet/Circuit Switched NoCs

    Get PDF
    Chip multiprocessors with few to tens of processing cores are already commercially available. Increased scaling of technology is making it feasible to integrate even more cores on a single chip. Providing the cores with fast access to data is vital to overall system performance. When a core requires access to a piece of data, the core's private cache memory is searched first. If a miss occurs, the data is looked up in the next level(s) of the memory hierarchy, where often one or more levels of cache are shared between two or more cores. Communication between the cores and the slices of the on-chip shared cache is carried through the network-on-chip(NoC). Interestingly, the cache and NoC mutually affect the operation of each other; communication over the NoC affects the access latency of cache data, while the cache organization generates the coherence and data messages, thus affecting the communication patterns and latency over the NoC. This thesis considers hybrid packet/circuit switched NoCs, i.e., packet switched NoCs enhanced with the ability to configure circuits. The communication and performance benefit that come from using circuits is predicated on amortizing the time cost incurred for configuring the circuits. To address this challenge, NoC designs are proposed that take advantage of properties of the cache traffic, namely temporal locality and predictability, to amortize or hide the circuit configuration time cost. First, a coarse-grained circuit configuration policy is proposed that exploits the temporal locality in the cache traffic to periodically configure circuits for the heavily communicating nodes. This allows the design of a locality-aware cache that promotes temporal communication locality through data placement, while designing suitable data replacement and migration policies. Next, a fine-grained configuration policy, called Déjà Vu switching, is proposed for leveraging predictability of data messages by initiating a circuit configuration as soon as a cache hit is detected and before the data becomes available. Its benefit is demonstrated for saving interconnect energy in multi-plane NoCs. Finally, a more proactive configuration policy is proposed for fast caches, where circuit reservations are initiated by request messages, which can greatly improve communication latency and system performance

    An Experimental Comparison of Speed Scaling Algorithms with Deadline Feasibility Constraints

    Get PDF
    We consider the first, and most well studied, speed scaling problem in the algorithmic literature: where the scheduling quality of service measure is a deadline feasibility constraint, and where the power objective is to minimize the total energy used. Four online algorithms for this problem have been proposed in the algorithmic literature. Based on the best upper bound that can be proved on the competitive ratio, the ranking of the online algorithms from best to worst is: qOAqOA, OAOA, AVRAVR, BKPBKP. As a test case on the effectiveness of competitive analysis to predict the best online algorithm, we report on an experimental ``horse race\u27\u27 between these algorithms using instances based on web server traces. Our main conclusion is that the ranking of our algorithms based on their performance in our experiments is identical to the order predicted by competitive analysis. This ranking holds over a large range of possible power functions, and even if the power objective is temperature

    Theoretical Analysis and Evaluation of NoCs with Weighted Round-Robin Arbitration

    Full text link
    Fast and accurate performance analysis techniques are essential in early design space exploration and pre-silicon evaluations, including software eco-system development. In particular, on-chip communication continues to play an increasingly important role as the many-core processors scale up. This paper presents the first performance analysis technique that targets networks-on-chip (NoCs) that employ weighted round-robin (WRR) arbitration. Besides fairness, WRR arbitration provides flexibility in allocating bandwidth proportionally to the importance of the traffic classes, unlike basic round-robin and priority-based arbitration. The proposed approach first estimates the effective service time of the packets in the queue due to WRR arbitration. Then, it uses the effective service time to compute the average waiting time of the packets. Next, we incorporate a decomposition technique to extend the analytical model to handle NoC of any size. The proposed approach achieves less than 5% error while executing real applications and 10% error under challenging synthetic traffic with different burstiness levels.Comment: This paper is accepted in International Conference on Computer Aided Design (ICCAD), 202

    Serum interferon-alpha level in first degree relatives of systemic lupus erythematosus patients: Correlation with autoantibodies titers

    Get PDF
    AbstractBackground and objectivesInterferon-α (IFN-α), a cytokine with both antiviral and immune-regulatory functions, was suggested as a useful tool which can evaluate current systemic lupus erythematosus (SLE) disease activity and identify patients who are at risk of future disease flares. In the current study, serum IFN-α levels and associated demographic, and serological features in Egyptian SLE patients and their first degree relatives (FDRs) in comparison to unrelated healthy controls (UHCs) were examined, in order to identify individuals at the greatest risk for clinical illness.MethodsIn a cross-sectional study, blood samples were drawn from 54 SLE patients, 93 of their FDRs who consented to enroll into the study and 76 UHCs. Measurement of serum IFN-α by a modified ELISA was carried out. Data were analyzed for associations of serum IFN-α levels with autoantibodies titer.ResultsMean serum IFN-α in FDRs was statistically higher than the UHCs and lower than in SLE patients (P<0.0001) and it was correlated with ANA titer (r=0.6, P<0.0001) and anti ds DNA titer (r=0.62, P<0.0001).ConclusionIFN-α is a crucial player in the complicated autoimmune changes that occur in SLE and serum IFN-α can be a useful marker identifying persons who are at risk of future disease development

    Evaluation of prognostic risk models for postoperative pulmonary complications in adult patients undergoing major abdominal surgery: a systematic review and international external validation cohort study

    Get PDF
    Background Stratifying risk of postoperative pulmonary complications after major abdominal surgery allows clinicians to modify risk through targeted interventions and enhanced monitoring. In this study, we aimed to identify and validate prognostic models against a new consensus definition of postoperative pulmonary complications. Methods We did a systematic review and international external validation cohort study. The systematic review was done in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We searched MEDLINE and Embase on March 1, 2020, for articles published in English that reported on risk prediction models for postoperative pulmonary complications following abdominal surgery. External validation of existing models was done within a prospective international cohort study of adult patients (≥18 years) undergoing major abdominal surgery. Data were collected between Jan 1, 2019, and April 30, 2019, in the UK, Ireland, and Australia. Discriminative ability and prognostic accuracy summary statistics were compared between models for the 30-day postoperative pulmonary complication rate as defined by the Standardised Endpoints in Perioperative Medicine Core Outcome Measures in Perioperative and Anaesthetic Care (StEP-COMPAC). Model performance was compared using the area under the receiver operating characteristic curve (AUROCC). Findings In total, we identified 2903 records from our literature search; of which, 2514 (86·6%) unique records were screened, 121 (4·8%) of 2514 full texts were assessed for eligibility, and 29 unique prognostic models were identified. Nine (31·0%) of 29 models had score development reported only, 19 (65·5%) had undergone internal validation, and only four (13·8%) had been externally validated. Data to validate six eligible models were collected in the international external validation cohort study. Data from 11 591 patients were available, with an overall postoperative pulmonary complication rate of 7·8% (n=903). None of the six models showed good discrimination (defined as AUROCC ≥0·70) for identifying postoperative pulmonary complications, with the Assess Respiratory Risk in Surgical Patients in Catalonia score showing the best discrimination (AUROCC 0·700 [95% CI 0·683–0·717]). Interpretation In the pre-COVID-19 pandemic data, variability in the risk of pulmonary complications (StEP-COMPAC definition) following major abdominal surgery was poorly described by existing prognostication tools. To improve surgical safety during the COVID-19 pandemic recovery and beyond, novel risk stratification tools are required. Funding British Journal of Surgery Society
    corecore